Exercise 57

If p is a polynomial, show that $\lim _{x \rightarrow a} p(x)=p(a)$.

Solution

Suppose that p is an n th-degree polynomial in x.

$$
p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}
$$

Take the limit of $p(x)$ as $x \rightarrow a$.

$$
\lim _{x \rightarrow a} p(x)=\lim _{x \rightarrow a}\left(c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}\right)
$$

The limit of a sum is the sum of the limits.

$$
\lim _{x \rightarrow a} p(x)=\lim _{x \rightarrow a} c_{0}+\lim _{x \rightarrow a} c_{1} x+\lim _{x \rightarrow a} c_{2} x^{2}+\cdots+\lim _{x \rightarrow a} c_{n} x^{n}
$$

The limit of a constant times a function is the constant times the limit of the function.

$$
\lim _{x \rightarrow a} p(x)=c_{0} \lim _{x \rightarrow a} 1+c_{1} \lim _{x \rightarrow a} x+c_{2} \lim _{x \rightarrow a} x^{2}+\cdots+c_{n} \lim _{x \rightarrow a} x^{n}
$$

The limit of a product is the product of the limits.

$$
\begin{aligned}
\lim _{x \rightarrow a} p(x) & =c_{0} \lim _{x \rightarrow a} 1+c_{1} \lim _{x \rightarrow a} x+c_{2}\left(\lim _{x \rightarrow a} x\right)^{2}+\cdots+c_{n}\left(\lim _{x \rightarrow a} x\right)^{n} \\
& =c_{0}(1)+c_{1}(a)+c_{2}(a)^{2}+\cdots+c_{n}(a)^{n} \\
& =c_{0}+c_{1} a+c_{2} a^{2}+\cdots+c_{n} a^{n} \\
& =p(a)
\end{aligned}
$$

